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Abstract 
We present a general method for modeling and animating liquids. 
The system is specifically designed for computer animation and 
handles viscous liquids as they move in a 3D environment and 
interact with graphics primitives such as parametric curves and 
moving polygons. We combine an appropriately modified semi-
Lagrangian method with a new approach to calculating fluid flow 
around objects. This allows us to efficiently solve the equations of 
motion for a liquid while retaining enough detail to obtain 
realistic looking behavior. The object interaction mechanism is 
extended to provide control over the liquid’s 3D motion. A high 
quality surface is obtained from the resulting velocity field using a 
novel adaptive technique for evolving an implicit surface.  
Keywords: animation, computational fluid dynamics, implicit 
surface, level set, liquids, natural phenomena, Navier-Stokes, 
particles, semi-Lagrangian. 

1. Introduction 
The desire for improved physics-based animation tools has grown 
hand in hand with the advances made in computer animation on 
the whole. It is natural then, that established engineering 
techniques for simulating and modeling the real world have been 
modified and applied to computer graphics more frequently over 
the last few years. One group of methods that have resisted this 
transition are those used to model the behavior of liquids from the 
field of computational fluid dynamics (CFD). Not only are such 
techniques generally complex and computationally intensive, but 
they are also not readily adaptable to what could be considered 
the basic requirements of a computer animation system. 
One of the key difficulties encountered when using these methods 
for animation directly characterizes the trade off between 
simulation and control. Physics-based animations usually rely on 
direct numerical simulation (DNS) to achieve realism. In 
engineering terms, this means that initial conditions and boundary 
conditions are specified and the process is left to run freely with 
only minor influence on the part of the animator. The majority of 
engineering techniques for liquid simulation assume this model.  
From an animation viewpoint, we are interested in using 
numerical techniques to obtain behaviors that would be 
prohibitive to model by hand. At the same time we want control 

over the global, low frequency motion so we can match it to the 
behavior we are trying to create. This then becomes the goal when 
transitioning between engineering and computer animation; 
preserve as much of the realistic behavior as feasible while 
allowing for control over motion on both a local and global scale. 
This has to be achieved without compromising the overall 
requirement of a visually coherent and realistic look.  
This paper specifically addresses these issues for liquid animation. 
The method presented is for animating viscous liquids ranging 
from water to thick mud. These liquids can freely mix, move 
arbitrarily within a fixed three-dimensional grid and interact 
realistically with stationary or moving polygonal objects. This is 
achieved for animation by trading off engineering correctness for 
computational efficiency. 
We start with the Navier-Stokes equations for incompressible 
flow and solve for liquid motion using an adaptation of a semi-
Lagrangian method introduced recently to graphics for solving 
fluid flows [25]. These methods usually result in mass dissipation. 
While not an issue for gas or smoke, this is visually unacceptable 
for modeling liquids. We correct for this by tracking the motion of 
the liquid surface using a novel hybrid combination of inertialess 
particles and an implicit surface called a level set. The level set 
prevents mass dissipation while the particles allow the liquid to 
still splash freely. A useful consequence is that this combined 
surface can be rendered in a highly believable way.   
The next innovation involves taking account of the effects of 
moving polygonal objects within the liquid. We develop a new 
technique that, while not accurate in an engineering sense, 
satisfies the physics of object/liquid interactions and looks 
visually realistic. This method is efficient and robust, and we 
show that it can be adapted to provide low frequency directional 
control over the liquid volume. This allows us to efficiently 
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Figure 1: A ball splashes into a tank of water. 
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calculate liquid behavior that would be impossible to get by hand, 
while at the same time allowing us to “dial-in” specific motion 
components. 
When the techniques described above are applied together, the 
result is a comprehensive system for modeling and animating 
liquids for computer graphics. The main contributions of the 
system are a numerical method that takes the minimal 
computational effort required for visual realism combined with 
tailor-made methods for handling moving objects and for 
maintaining a smooth, temporally coherent liquid surface. 

2. Previous Work 
The behavior of a volume of liquid can be described by a set of 
equations that were jointly developed by Navier and Stokes in the 
early eighteen hundreds (see next section). The last fifty years has 
seen an enormous amount of research by the CFD community into 
solving these equations for a variety of engineering applications. 
We direct the interested reader to Abbot and Basco [1] which 
covers some of the important principles without being too 
mathematically dense.  
Early graphics work concentrated on modeling just the surface of 
a body of water as a parametric function that could be animated 
over time to simulate wave transport [12, 22, 23]. Kass and Miller 
[17] approximated the 2D shallow water equations to get a 
dynamic height field surface that interacted with a static ground 
“object”. Chen and Lobo [4] extended the height field approach 
by using the pressure arising from a 2D solution of the Navier-
Stokes equations to modulate surface elevation. O’Brien and 
Hodgins [20] simulated splashing liquids by combining a particle 
system and height field, while Miller and Pearce [19] used 
viscous springs between particles to achieve dynamic flow in 3D. 
Terzopoulos, Platt and Fleischer [27] simulated melting 
deformable solids using a molecular dynamics approach to 
simulate the particles in the liquid phase.  
Surface or particle based methods are relatively fast, especially in 
the case of large bodies of water, but they don’t address the full 
range of motion exhibited by liquids. Specifically, they don’t take 
advantage of the realism inherent in a full solution to the Navier-
Stokes equations. They are also not easily adapted to include 
interaction with moving objects. Foster and Metaxas [11] 
modified an original method by Harlow and Welch [15] (later 
improved by others, see e.g. [5]) to solve the full equations in 3D 
with arbitrary static objects and extended it to include simple 
control mechanisms [9]. Foster and Metaxas also applied a similar 
technique to model hot gases [10]. Stam [25] replaced their finite 
difference scheme with a semi-Lagrangian method to achieve 
significant performance improvements at the cost of increased 
rotational damping. Yngve et al. used a finite difference scheme to 
solve the compressible Navier-Stokes equations to model shock 
wave and convection effects generated by an explosion [28]. 

3. Method Outline 
The Navier-Stokes equations for describing the motion of a liquid 
consist of two parts. The first, enforces incompressibility by 
saying that mass should always be conserved, i.e. 

0∇ ⋅ =u ,      (3.1)   

where u  is the liquid velocity field, and 

( )/ x, / y, / z∇ = ∂ ∂ ∂ ∂ ∂ ∂  

is the gradient operator. The second equation couples the velocity 
and pressure fields and relates them through the conservation of 
momentum, i.e. 

( ) ( )t
1

p + = ν∇ ⋅ ∇ − ⋅ ∇ − ∇
ρ

u u u u g . (3.2) 

This equation models the changes in the velocity field over time 
due to the effects of viscosity (ν), convection, density (ρ), 
pressure (p), and gravity (g). By solving (3.1) and (3.2) over time, 
we can model the behavior of a volume of liquid. The new 
algorithm we are proposing to do this consists of six 
straightforward steps. 

I. Model the static environment as a voxel grid. 
II. Model the liquid volume using a combination of 

particles and an implicit surface. 
Then, for each simulation time step 
III. Update the velocity field by solving (3.2) using finite 

differences combined with a semi-Lagrangian method. 
IV. Apply velocity constraints due to moving objects. 
V. Enforce incompressibility by solving a linear system 

built from (3.1). 
VI. Update the position of the liquid volume (particles and 

implicit surface) using the new velocity field. 
These steps are described in detail in the following sections. Steps 
IV and V are presented in reverse order for clarity.  

4. Static Environment 
Equations (3.1) and (3.2) model a liquid as two coupled dynamic 
fields, velocity and pressure. The motion of the liquid we are 
modeling will be determined by evolving these fields over time. 
We start by representing the environment that we want the liquid 
to move in as a rectangular grid of voxels with side length ∆τ. The 
grid does not have to be rectangular, but the overhead of unused 
(non-liquid containing) cells will be low and so it is convenient. 
Each cell has a pressure variable at its center and shares a velocity 
variable with each of its adjacent neighbors (see figure 2). This 
velocity is defined at the center of the face shared by the two 
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Figure 2: A single grid cell with three of its six face velocities 
shown. 
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neighboring cells and represents the magnitude of the flow normal 
to that face. This is the classic “staggered” MAC grid [15]. Each 
cell is then either tagged as being empty (available to be filled 
with liquid) or filled completely with an impermeable static 
object. Despite the crude voxelized approximation of both objects 
and the liquid volume itself, we’ll show that we can still obtain 
and track a smooth, temporally coherent liquid surface.  

5. Liquid Representation 
The actual distribution of liquid in the environment is represented 
using an implicit surface. The implicit function is derived from a 
combination of inertialess particles and a dynamic isocontour. The 
isocontour provides a smooth surface to regions of liquid that are 
well resolved compared to our grid, whereas the particles provide 
detail where the surface starts to splash.  

5.1 Particles 
Particles are placed (or introduced via a source) into the grid 
according to some initial liquid distribution. Their positions then 
evolve over time by simple convection. Particle velocity is 
computed directly from the velocity grid using tri-linear 
interpolation and each particle is moved according to the 
inertialess equation dxp/dt = vx, where vx is the fluid velocity at xp. 
Particles have a low computational overhead and smoothly 
integrate the changing liquid velocity field over time.  The 
obvious drawback to using them, however, is that there is no 
straightforward way to extract a smooth polygonal (or parametric) 
description of the actual liquid surface. This surface is preferred 
because we want to render the liquid realistically using traditional 
computer graphics techniques. It is possible to identify it by 
connecting all the particles together into triangles, although 
deducing both the connectivity and set of surface triangles is 
difficult. In addition, since the particles do not generally form a 
smooth surface, the resulting polygonal mesh suffers from 
temporal aliasing as triangles “pop” in or out.  

5.2 Isocontour 
An alternative technique for representing the liquid surface is to 
generate it from an isocontour of an implicit function. The 
function is defined on a high resolution Eulerian sub-grid that sits 
inside the Navier-Stokes grid. Let each particle represent the 
center of an implicitly defined volumetric object (see Bloomenthal 
et al. [3] for a survey of implicit surfaces). Specifically, an 
implicit function centered at the particle location xp with radius r 
is given by  

          2 2 2
p i pi j pj k pk( ) = (x x ) +(x x ) +(x x ) rφ − − − −x . 

The surface of that particle is defined as the spherical shell around 
xp where φp(x)=0. An implicit function, φ(x), is then defined over 
all the particles by taking the value of φp(x) from the particle 
closest to x. If we sample φ(x) at each sub-grid point we can use a 
marching cubes algorithm [18] to tessellate the φ(x)=0 isocontour 
with polygons. More sophisticated blend functions could be used 
to create an implicit function, however, we are going to 
temporally and spatially smooth φ(x) so it isn’t necessary. We 
refer those interested in wrapping implicit surfaces around 
particles to the work of Desbrun and Cani-Gascuel [7]. 

The first step towards smoothing the surface is to normalize φ  so 
that |φ(x)| equals the distance from x to the closest point on the 
zero isocontour. The sign of φ is set negative inside the liquid and 

positive outside. This signed distance function can be created 
quickly using the Fast Marching Method [24] starting from the 
initial guess of φ(x) defined by the particles as outlined above.  

In order to smooth out φ to reduce unnatural “folds” or “corners” 
in the surface (see figure 3), a smoothing equation of the form 

( )( )=0 1S η
ηφ = − φ ∇φ − ,   (5.1) 

is used to modify values of φ close to the φ(x)=0 isocontour. S(φ) 
is a smoothed sign function given by  

( )
2 2

S
φ

φ =
φ + ∆τ

. 

If applied for a few relaxation steps in fictitious time η 
(everything else remains constant), (5.1) smooths out the φ(x)=0 
isocontour while maintaining overall shape. Once smoothed, the 
isocontour can be ray traced directly using a root finding 
algorithm to identify the zero values of φ. A fast root finder can be 
built easily because at any sub-grid point the value of φ explicitly 
gives the minimum step to take to get closer to the surface. Note 
that the surface normal is given by n = ∇φ ∇φ . 

By creating a smooth isocontour for each frame of animation, we 
get an improved surface representation compared to using 
particles alone. There are still drawbacks however. A high density 
of particles is required at the φ(x)=0 isocontour before the surface 
looks believably flat. Particles are also required throughout the 
entire liquid volume even when it’s clear that they make no 
contribution to the visible surface. The solution is to create φ once 
using the particles, and then track how it moves using the same 
velocity field that we’re using to move the particles. This leads to 
a temporally smoothed dynamic isosurface known in the CFD 
literature as a level set.  

5.3 Dynamic Level Set 
An obvious way to track the evolution of the surface of a volume 
of liquid would be to attach particles directly to the surface in its 
initial position and then just move them around in the velocity 
field. This would require adding extra particles when the surface 
becomes too sparsely resolved, and removing them as the surface 
folds, or “splashes” back over itself. An alternative method which 
is intuitively similar, but that doesn’t use particles, was developed 
by Osher and Sethian [21] and is called the level set method.  

We want to evolve φ directly over time using the liquid velocity 
field u. We have a smooth surface but need to conform, visually at 
least, to the physics of liquids. It has been shown [21] that the 

Figure 3: The isocontour due to the implicit function around 
the particles, interpolated φ values, and smoothed φ values, 
respectively. 
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equation to update φ under these circumstances has the following 
structure, 

t 0φ + ⋅ ∇φ =u .    (5.2) 

Using (5.2), the surface position is evolved over time by tracking 
φ(x)=0. The (u ⋅∇ φ) term is a convection term similar to the 
(u ⋅∇ )u term in (3.2) implying that we could use a semi-
Lagrangian method to solve this equation. However, since this 
equation represents the mass evolution of our liquid, the semi-
Lagrangian method tends to be too inaccurate. Instead we use a 
higher order upwind differencing procedure [1] on the 
(u ⋅∇ φ) term. Fedkiw et al. [8] used this methodology to track a 
fluid surface and give explicit details on solving (5.2). This 
method can suffer from severe volume loss especially on the 
relatively coarse grids commonly used in computer graphics. This 
is clearly visible when regions of liquid break away during 
splashing and then disappear because they are too small to be 
resolved by the level set. We require visual coherency for this to 
be a useful graphics technique and so the level set method needs 
to be modified to preserve volume. 

5.4 Hybrid Surface Model 
Particle evolution is a fully Lagrangian approach to the mass 
motion while level set evolution is a fully Eulerian approach. 
Since they tend to have complementary strengths and weakness, a 
combined approach gives superior results under a wider variety of 
situations. Level set evolution suffers from volume loss near 
detailed features while particle evolution suffers from visual 
artifacts in the surface when the number of particles is small. 
Conversely, the level set is always smooth, and particles retain 
detail regardless of flow complexity. Therefore we suggest a novel 
combination of the two approaches. 

At each time step we evolve the particles and the level set φ 
forward in time. Next, we use the updated value of the level set 
function to decide how to treat each particle. If a particle is more 
than a few grid cells away from, and inside the surface, as 
indicated by the locally interpolated value of φ, then that particle 
is deleted. This increases efficiency since particles are only 
needed locally near the surface of the liquid as opposed to 
throughout the entire liquid volume.  In addition, for cells close to 
φ(x)=0 that are sparsely populated, extra particles can be 
introduced “within” the isocontour. Thus, for a bounded number 
of particles, we get improved surface resolution. 
Next, for each particle near the surface, the locally interpolated 
curvature of the interface, calculated as  

( )k = ∇ ⋅ ∇φ ∇φ , 

is used to indicate whether or not the surface is smooth. Smooth 
regions have low curvature and the particles are ignored allowing 
the level set function to give a very smooth representation of the 
liquid surface. On the other hand, regions of high curvature 
indicate splashing. In these regions, the particles are a better 
indicator of the rough surface topology. Particles in these regions 
are allowed to modify the local values of φ. At grid points where 
the implicit basis function for the particle would give a smaller 
value of φ (i.e. a particle is “poking” out of the zero level set), this 
smaller value is used to replace the value obtained from the time 
evolution of φ.  

Even with the tight coupling between the particles and the level 
set, some particles will escape the inside of the liquid layer since 
the grid is too coarse to represent them individually. These 
particles can be rendered directly as small liquid drops. In 
addition, these stray particles could be used as control particles to 
indicate the presence of fine spray or mist.  

6. Updating the Velocity Field  
We have a representation of the graphics environment and a way 
of tracking the surface of a volume of liquid. We can now apply 
(3.2) to the existing velocity field to advance it through an Euler-
integration time step ∆t. The equation is solved in three stages. 
First we compute ∆t using the CFL condition (see Appendix A). 
Next, we update the convective component, i.e. (u ⋅∇ )u, using a 
first order semi-Lagrangian method, as per Courant et al. [6] and 
by Stam [25]. We use the same formulation as Stam and refer 
readers to his description. Standard central differencing is then 
used on the viscous terms of (3.2) as described by Foster and 
Metaxas [11]. The results from this and the preceding calculation 
are added together to get an updated (though not mass conserving) 
velocity field for time t+∆t. 
Semi-Lagrangian methods allow us to take large time steps 
without regard for the sometimes overly restrictive CFL condition 
[26]. Unfortunately, these large time steps come at the cost of 
added dissipation. This is visually acceptable for gases such as 
smoke where it appears realistic. For liquids however, mass 
dissipation ruins the visual effect. Therefore, even though we use 
a semi-Lagrangian method to update (3.2), the time step for 
evolving the particles and the level set still needs to be limited 
according to a plausible CFL condition. Updating the surface 
position isn’t particularly expensive computationally, and so we 
alternate between a large time step for updating the Navier-Stokes 
equations and a series of small time steps (that add up to the large 
time step) for the particles and the level set. Our experience 
suggests that the velocity field time step can only be a few 
(around five) times bigger than that dictated by the usual CFL 
criterion. However, even this gives tremendous computational 
savings, since enforcing incompressibility (step V, discussed in 
section 8) is the most expensive part of the algorithm.  

Figure 4: Water pours into a container causing a complex 
surface to develop. 
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We caution the reader that using a particle only evolution with the 
semi-Lagrangian method introduces noise into the surface, and 
that using a level set only evolution with the semi-Lagrangian 
method gives noticeable volume loss. The key to making the 
semi-Lagrangian method work for liquids is the mixed Eulerian-
Lagrangian formulation that uses both particles and level sets to 
evolve the surface position over time.  

7. Boundary Conditions 
When solving (3.2) within the grid, we need to specify pressure 
and velocity values for certain cells. We want stationary object 
cells to resist liquid motion and cells that represent the boundary 
between air and liquid to behave appropriately. 

7.1.1 Non-liquid Cells 
Cells in the grid that don't contain particles and aren’t contained 
within the isosurface are either considered empty (open air) or are 
part of an object. If a cell is empty, its pressure is set to 
atmospheric pressure, and the velocity on each of its faces shared 
with another empty cell is set to zero. This assumes that air 
dynamics has a negligible effect. An object cell, on the other 
hand, can have velocities and pressures set using many different 
combinations to approximate liquid flowing into or out of the 
environment, or to approximate different object material 
properties. Foster and Metaxas [10] summarize and discuss 
methods to do this.  

7.1.2 Liquid Surface 
Other grid cells that require special attention are those that 
contain part of the φ(x)=0 isocontour. Such cells represent what 
we know about the location of the liquid surface within the grid. 
The movement of the isocontour will determine how the surface 
evolves, but we need to set velocities on faces between empty and 
liquid cells so that normal and tangential stresses are zero.  
Intuitively, we need to make sure that the "air" doesn't mix with or 
inhibit the motion of the liquid, while allowing it to flow freely 
into empty cells. This is done by explicitly enforcing 
incompressibility within each cell that contains part of the liquid 
surface. Velocities adjacent to a liquid filled cell are left alone, 
whereas the others are set directly so (3.1) is satisfied for that cell. 
The pressure in a surface cell is set to atmospheric pressure.  

8. Conservation of Mass 
The velocity field generated after evolving the Navier-Stokes 
equations (steps III and IV) has rotation and convection 
components that are governed by (3.2) (excluding the pressure 
term). However, (3.1), conservation of mass, is only satisfied in 
surface cells where we have explicitly enforced it. The best we 
can do to preserve mass within our grid is to ensure that the 
incompressibility condition is satisfied for every grid cell (at least 
to some tolerance). Foster and Metaxas [11] achieved this using a 
technique called Successive Over Relaxation.  
A more efficient method for enforcing incompressibility comes 
from solving the linear system of equations given by using the 
Laplacian operator to couple local pressure changes to the 
divergence in each cell. Specifically, this gives 

2p= t∇ ρ∇ ⋅ ∆u ,    (8.1)

where 2∇ p is the spatial variation (Laplacian) of the pressure and 
u is the velocity field obtained after solving (3.2). Applied at the 
center of a cell, (8.1) can be discretized as 

          ( )
{ }

( )
{ }n+1 n-1 n+1 n

n ijk n ijk
p +p 6p u u

t= =

∆τ
∑ ∑− = ρ −

∆
,  (8.2) 

where pn ± 1 is the pressure from the cell ahead (+) or behind (-) in 
the n direction, and the u values are taken directly from the grid 
cell faces. Using (8.2), we form a linear system AP = b where P is 
the vector of unknown pressures needed to make the velocity field 
divergence free, b is the RHS of (8.2), and A has a regular but 
sparse structure. The diagonal coefficients of A, aii, are equal to 
the negative number of liquid cells adjacent to celli (e.g., -6 for a 
fully “submerged” cell) while the off diagonal elements are simply 
aij=aji=1 for all liquid cellsj adjacent to celli.  
Conveniently, the system described above is symmetric and 
positive definite (as long as there is at least one surface cell as part 
of each volume). Static object and empty cells don’t disrupt this 
structure. In that case pressure and velocity terms can disappear 
from both sides of (8.2), but the system remains symmetric. 
Because of this, it can be solved quickly and efficiently using a 
Preconditioned Conjugate Gradient (PCG) method.  Further 
efficiency gains can be made by using an Incomplete Choleski 
preconditioner to accelerate convergence. There is a wealth of 
literature available regarding PCG techniques and we recommend 
any of the standard implementations, see Barret et al. [2] for some 
basic templates. Once the new pressures have been determined, 
the velocities in each cell are updated according to 

( )t t
{ijk} {ijk} n n-1

t
u = u p p+∆ ∆

− −
ρ∆τ

   

The resulting velocity field conserves mass (is divergence free) 
and satisfies the Navier-Stokes equations. 

9. Moving Objects 
Previous techniques proposed for liquid animation could deal 
with static objects that have roughly the same resolution as the 
grid, but they have difficulty dealing with moving objects. 
Unfortunately, the CFD literature has little to offer to help resolve 
the effects of moving objects on a liquid in terms of animation. 
There are sophisticated methods available for handling such 
interactions, but they typically require highly resolved 
computational grids or a grid mechanism that can adapt itself to 
the moving object surface. Neither approach is particularly well 
suited to animation because of the additional time complexity 
involved. Therefore, we propose the following method for 
handling interactions between moving objects and the liquid. 
Consider an object (or part of an object) moving within a cell that 
contains liquid. There are two basic conditions that we want to 
enforce with respect to the computational grid, and an additional 
condition with respect to the surface tracking method. These are 

1. Liquid should not flow into the object. At any point of 
contact, the relative velocity between the liquid and 
object along the object’s surface normal should be 
greater than or equal to zero. 

2. Tangential to the surface, the liquid should flow freely 
without interference. 

3. Neither the particles nor the level set surface should pass 
through any part of the surface of the object. 
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The last of these is relatively straightforward. We know where the 
polygons that comprise the object surface are and in what 
direction they are moving. We simply move the particles so that 
they are always outside the surface of the object. As long as we 
accurately take account of the velocity field within the grid then 
the isocontour will remain in the correct position relative to the 
object.   
To prevent liquid from flowing into the object we directly set the 
component of liquid velocity normal to the object. We know the 
object surface normal, ns, and can calculate the liquid velocity 
relative to that surface, vr, in a given cell. If vr.ns < 0 then liquid is 
flowing through the surface. In such cases we manipulate u in the 
cell so that vr.ns = 0 leaving the tangential (“slip”) part of the 
velocity unchanged. 
These velocities need to be applied without introducing visual 
artifacts into the flow. The following method solves for both 
normal and tangential velocity components. It’s relatively 
intuitive, and it seems to work well in practice. The steps are 

1. As a boundary condition, any cell within a solid object has 
its velocities set to that of the moving object. 

2. The velocity field is updated using (3.2). No special 
consideration is given to cells containing an object, i.e. 
they are all allowed to change freely as if they contain 
liquid. 

3. Each cell that intersects an object surface gets the 
component of the object velocity along its normal set 
explicitly as outlined above.  

4. Cells internal to the object have their velocities set back to 
the object velocity. 

5. During the mass conservation step (section 8) the velocity 
for any grid cell that intersects the object is held fixed.  

The result of this approach is that liquid is both pushed along by 
an object while being allowed to flow freely around it, causing 
realistic-looking behavior in the mean time. Obviously it’s only 
possible to accurately account for one polygon face per grid cell. 
Objects that are more detailed with respect to the grid can still be 
handled by determining an average object surface normal and 
velocity for each intersecting cell, but grid resolution remains the 
limiting factor. 

10. Control 
Animation is all about control. Having things behave according to 
some arbitrary aesthetic is the goal of most production software. 
The difficulty is in providing this level of control over a physics-
based animation while still maintaining a realistic behavioral 
component. The nature of the governing equations of motion of 
liquids means that they will always swirl, mix, and splash unless 
the applied forces are identical everywhere. This necessarily limits 
the level of control that we can have over the final motion and 
comes with the territory of non-linear simulation. 
Gates [13] has shown that mass conserving flow fields can be 
blended with calculated fields to get good non-dynamic results. 
The Navier-Stokes equations allow for the body force term, g, to 
be manipulated directly [9] much like a traditional particle system. 
Forces aren't always a very intuitive way of getting motion that we 
want however. The moving object mechanism on the other hand, 
is well suited to this. Instead of moving polygons, we can 
explicitly set velocities anywhere in the grid by introducing “fake” 

surfaces (a single point even) that have normals and velocities 
pointing in the direction that we want the liquid to go. Setting the 
normal and tangential velocities in individual cells is also possible 
if it is done before the mass conservation calculation. This allows 
the solver to smooth out any lack of physical correctness in 
applied velocities before passing them into (3.2).  
As a brief example, consider a set of 3D parametric space curves 
that define the desired path for the liquid to follow. We instance a 
set of points along each curve giving each point a parametric 
coordinate ϕp. A point’s spatial position is then given simply by 
the curve definition, i.e. xp=F(ϕp). The velocity of the point can 
then be described as 

( )p p p(t) d ( ) dC F= ϕ ϕv     

where C(t) is a monotonic key framed scaling function. C(t) is 
also used to update ϕp over time according to dϕp/dt = C(t). The 
“fake” surface normal of the point is then simply np = vp/|vp|. By 
manipulating xp, vp, and np over time, we can “trap” small pockets 
of liquid and control them directly. The governing equations then 
make sure that neighboring liquid attempts to follow along. 
This basic approach can be adapted to surfaces or even volumetric 
functions as long as they vary smoothly.  While still not giving 
perfect direct control over the liquid motion, when combined with 
force fields it is good enough to make it a useful animation tool. 

11. Results 
The animation system described in the preceding sections was 
used to generate all of the examples in this paper. The basic 
Navier-Stokes solver and implicit surface are demonstrated by the 
container-filling example in figure 4. The combination of particles 
and level set make sure that the resulting surface stays smooth and 
behaves in a physically believable way. The splashing object 
examples in figures 1, 5 and 6 show close interaction between the 
liquid and moving objects. They also show how the hybrid surface 
can handle extreme splashing without either the particles or level 
set being apparent. The particles play a large role in both cases by 
allowing the liquid to “splash” at a higher resolution than would 
be possible with the level set alone. All of these images were 
rendered using a ray-tracing algorithm that marches through the 
implicit surface grid as outlined in section 5.  
The final example, figure 7, makes use of just a spherical implicit 
function around each particle.  It shows the interaction between a 
thick (high viscosity) liquid and a hand animated character. The 
character surface is sampled at each grid cell and the mechanisms 
described in section 9 take account of all the motion in the scene. 
This includes the character filling his mouth with mud. The mud 
is later ejected using a 3D space curve as a controller as outlined 
in section 10. The captions to each figure give the static grid size 
used during calculation along with computation times per frame 
(for motion, not rendering) on a PentiumII 500MHz. 

12. Conclusion 
We have presented a method for modeling and animating liquids 
that is a pragmatic compromise between the numerical care that 
needs to be taken when simulating non-linear physics and the 
interaction and control animators require. Where appropriate, we 
have drawn on techniques from computational fluid dynamics and 
combined them with recent computer graphics advances as well as 
new methods for free surface evolution and interaction between 
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moving objects and the liquid volume. The result is a technique 
that is very general, efficient, and offers flexible control 
mechanisms for specifying how the liquid should behave. 
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A. Courant-Friedrichs-Levy (CFL) Condition 
The CFL condition is a restriction on the size of the time step, ∆t, 
that can be used together with a time-marching numerical 
simulation. It says that ∆t must be less than the minimum time 
over which “something significant” can occur in the system for 
the simulation to remain numerically stable. The CFL condition 
depends both on the physical system being modeled as well as the 
specifics of the discretization method employed. In the context of 
the system described in this paper a good CFL condition is that a 
discrete element of liquid cannot “jump over” a cell in the 
computational grid, i.e. ∆t < ∆τ / |u|. 
Note that the viscosity related terms also impose a CFL type 
restriction. This can be avoided by locally adjusting the 
magnitude of the viscosity in cells where the viscous terms would 
dictate the necessity for a smaller time step. 
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Figure 5: An ellipsoid slips along through shallow water. The combination of particle and level set tracking allows water to flow over the 
object without any visual loss of volume. The environment for this example was 250x75x90 cells. It took approximately seven minutes to 
calculate the liquid motion (including surface evolution) per frame. 
 

 
Figure 6: A close up of the ellipsoid from figure 5 showing the implicit surface derived from combining the particle basis functions and 
level set (top), and with the addition of the freely splashing particles raytraced as small spheres (bottom). The environment for this 
example was 150x75x90 cells. Calculation times were approximately four minutes per frame. 
 

 
Figure 7: A fully articulated animated character interacts with viscous mud. The environment surrounding the character is 150x200x150 
cells. That resolution is sufficient to accurately model the character filling his mouth with mud. A 3D control curve is used to eject (spit) 
the mouthful of mud later in the sequence. This example runs at three minutes per frame. 


